
Details of the Racetrack Jani Model appearing in
“Deep Statistical Model Checking”?

Timo P. Gros, Holger Hermanns, Jörg Hoffmann,
Michaela Klauck, and Marcel Steinmetz

Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
{timopgros,hermanns,hoffmann,klauck,steinmetz}@cs.uni-saarland.de

For reference, this compendium provides details regarding Racetrack and our Jani
models appearing in [1]. The model, along with all other infrastructure as well as
our modification of modes is publicly available at DOI:

10.5281/zenodo.3760098 [2]
States of the vehicle are described by two vectors: its current position (x, y)

indexing a cell within the grid, and its current velocity (dx, dy) ∈ Z2 in x and y-
direction. The state of the vehicle is updated at discrete steps. At each step, the
speed of the vehicle can be controlled via 9 different actions corresponding to the
acceleration vectors (ax, ay) ∈ ({−1, 0, 1})2. Acceleration is applied additively, i.e.,
the vehicle’s new velocity vector (d′x, d

′
y) after applying acceleration (ax, ay) is given

by d′x = dx + ax and d′y = dy + ay. The position of the vehicle is updated according
to the updated velocity vector, i.e., x′ = x+ d′x and y′ = y + d′y.

What we just specified is the deterministic variant of Racetrack. In the noisy vari-
ant, acceleration only succeeds with a probability of p ∈ [0, 1), while with probability
(1− p) the vehicle’s velocity remains the same.

We say that the vehicle has crashed if the vehicle either moved out of the grid
(i.e., its position no longer constitutes a valid grid coordinate), or the vehicle’s last
movement trajectory crossed a wall cell. Determining whether the vehicle has crashed
is done by discretizing the trajectory from the vehicle’s former position (x0, y0) :=
(x, y) to its new position (xn, yn) := (x′, y′) into a sequence of coordinates T =
〈(x0, y0), (x1, y1), . . . , (xn, yn)〉. Then, the vehicle has touched a wall iff T references
a coordinate of a wall cell. Checking whether the vehicle traversed a goal cell is done
in the same fashion. The trajectory discretization T is defined as follows:

T =



〈(x, y)〉 if dx = 0 and dy = 0 (1)

〈(x, y) , (x+ σx, y) , (x+ 2 · σx, y) . . . , (x′, y′)〉 if dx 6= 0 and dy = 0 (2)

〈(x, y) , (x, y + σy) , (x, y + 2 · σy) . . . , (x′, y′)〉 if dx = 0 and dy 6= 0 (3)

〈(x, y) , (x+ σx, by +mye) , (x+ 2 · σx, by + 2 ·mye) . . . , (x′, y′)〉
if dx 6= 0 and dy 6= 0

and |dx| ≥ |dy|
(4)

〈(x, y) , (bx+mxe , y + σy) , (bx+ 2 ·mxe , y + 2 · σy) . . . , (x′, y′)〉 if dx 6= 0 and dy 6= 0

and |dx| < |dy|
(5)

where σx = sgn(dx), σy = sgn(dy) and mx = dx

|dy| , my =
dy

|dx| . In words, if either the

horizontal or vertical speed is 0 (cases 1 to 3), the trajectory contains exactly all grid
coordinates on the straight line between (x, y) and (x′, y′). Otherwise, we linearly
interpolate n points between the two positions and then for each such point round to

? Authors are listed alphabetically.

http://doi.org/10.5281/zenodo.3760098

2

the closest position on the map. In our model n is given by max (|dx| , |dy|), while the
original discretization model always choose n = dx. The latter is problematic when
having a velocity which moves more into the y (case 5) than into the x direction (case
4), as then only few point will be contained in the trajectory and counterintuitive
results are produced.

Our Jani implementation is a straightforward encoding of the model described
above. The race track is encoded as a (constant) two-dimensional array whose size
equals that of the grid. The Jani files of different Racetrack instances differ only in
this array.

Vehicle movements and collision checks are represented by separate automata
that synchronize using shared actions. The vehicle automaton keeps track of the
current state of the vehicle via four bounded integer variables (position and di-
rectional velocity), and two Boolean variables (indicating whether the vehicle has
crashed, or has reached a goal cell). The automaton starts at a location with one
edge for each one of the 9 different acceleration vectors. Each of the edges updates
the velocity accordingly, and sends the start and resulting end coordinates to the
collision check automaton. The collision check can respond with three different an-
swers: “valid”, “crash”, or reached “goal”. If the trajectory was valid, the vehicle
automaton transitions back to its initial location. Otherwise the vehicle automaton
transitions into a terminal location where no further moves are possible.

The collision check automaton takes care of two things. It first checks whether
the vehicle’s destination lies within the grid. If so, it then iteratively computes the
discretized trajectory T , and looks up for each referenced coordinate whether the
corresponding entry in the grid array represents a wall or goal cell. If the trajectory
leads out of the track, or when an intersection of the trajectory with either a wall
or a goal cell is detected, the result is immediately sent to the vehicle automaton.
If the trajectory was completely generated without detecting a collision, the vehicle
automaton’s request is answered with “valid”, and the location is reset, waiting for
the next trajectory to test.

References

1. Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Steinmetz, M.: Deep Statistical
Model Checking. In: Proceedings of the 40th International Conference on Formal Tech-
niques for Distributed Objects, Components, and Systems (FORTE’20) (2020), available
at https://doi.org/10.1007/978-3-030-50086-3 6

2. Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Steinmetz, M.: Models and
Infrastructure used in ”Deep Statistical Model Checking” (2020), available at http:
//doi.org/10.5281/zenodo.3760098

https://doi.org/10.1007/978-3-030-50086-3_6
http://doi.org/10.5281/zenodo.3760098
http://doi.org/10.5281/zenodo.3760098

	Details of the Racetrack Jani Model appearing in ``Deep Statistical Model Checking''

